Hydrogen-bonding structure and dynamics of aqueous carbonate species from car-parrinello molecular dynamics simulations.
نویسندگان
چکیده
A comprehensive Car-Parrinello molecular dynamics (CP-MD) study of aqueous solutions of carbonic acid (H(2)CO(3)), bicarbonate (HCO(3)(-)), carbonate (CO(3)(2-)), and carbon dioxide (CO(2)) provides new quantitative insight into the structural and dynamic aspects of the hydrogen-bonding environments for these important aqueous species and their effects on the structure, H-bonding, and dynamical behavior of the surrounding water molecules. The hydration structures of the different carbonate species depend on their ability to accept and donate H-bonds with H(2)O. The H-bonds donated by the C-O-H sites of the carbonate species to water molecules are generally stronger and longer-lived than those accepted by these sites from water molecules. The structural relaxation among the water molecules is dominated by diffusional (translational) motion of H(2)O, whereas the H-bond reorganization is dominated by the librational motion of the water molecules and the carbonate species. The rates of structural relaxation of the H(2)O molecules and the rates of H-bond reorganization among them are slower in systems containing carbonate species, consistent with previous studies of simple salt solutions. The strengths and lifetimes of H-bonds involving the carbonate species positively correlate with the total negative charge on the species. H-bond donation from H(2)O to CO(2) is weak, but the presence of CO(2) noticeably affects the structure and structural relaxation of the surrounding H-bonding network leading to generally stronger H-bonds and slower relaxation rates, the behavior typical of a hydrophobic solute.
منابع مشابه
Solvent effects on electronic properties from Wannier functions in a dimethyl sulfoxide/water mixture.
We present an efficient implementation for the calculation of maximally localized Wannier functions (MLWFs) during parallel Car-Parrinello molecular dynamics simulations. The implementation is based on a block Jacobi method. The calculation of MLWFs results in only a moderate (10%-20%) increase in computer time. Consequently it is possible to calculate MLWFs routinely during Car-Parrinello simu...
متن کاملGlycosidic linkage conformation of methyl-alpha-mannopyranoside.
We study the preferred conformation of the glycosidic linkage of methyl-alpha-mannopyranoside in the gas phase and in aqueous solution. Results obtained utilizing Car-Parrinello molecular dynamics (CPMD) simulations are compared to those obtained from classical molecular dynamics (MD) simulations. We describe classical simulations performed with various water potential functions to study the im...
متن کاملAb initio molecular dynamics simulations and g-tensor calculations of aqueous benzosemiquinone radical anion: effects of regular and "T-stacked" hydrogen bonds.
Car-Parrinello molecular dynamics (CP-MD) simulations of the benzosemiquinone radical anion in aqueous solution have been performed at ambient conditions. Analysis of the trajectory shows not only extensive hydrogen bonding to the carbonyl oxygen atoms (ca. 4-5.6 water molecules depending on distance criteria), but also relatively long-lived "T-stacked" hydrogen bonds to the semiquinone pi-syst...
متن کاملHydrogen bonding and induced dipole moments in water: predictions from the Gaussian charge polarizable model and Car-Parrinello molecular dynamics.
We compare a new classical water model, which features Gaussian charges and polarizability (GCPM) with ab initio Car-Parrinello molecular dynamics (CPMD) simulations. We compare the total dipole moment, the total dipole moment distribution, and degree of hydrogen bonding at ambient to supercritical conditions. We also compared the total dipole moment calculated from both the electron density (p...
متن کاملHydrogen bridges of polycyclic aromatic systems with O-H···O bonds — a gas-phase vs. solid-state Car-Parrinello study
The current study belongs to a series of investigations of polycyclic aromatic compounds containing intramolecular hydrogen bonds. Close proximity of the coupled aromatic system and hydrogen bridges gives rise to resonance-assisted hydrogen bonding phenomena. Substituted naphthols are ideally suited for this kind of investigation. The parent compound, 1-hydroxy-8-methoxy-3-methylnaphthalene, an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry. B
دوره 113 3 شماره
صفحات -
تاریخ انتشار 2009